精英家教网 > 高中数学 > 题目详情

【题目】如果命题 p(n) 对 n=k 成立,那么它对 n=k+2 也成立,又若 p(n) 对 n=2 成立,则下列结论正确的是( )
A.p(n) 对所有自然数 n 成立
B.p(n) 对所有正偶数 n 成立
C.p(n) 对所有正奇数 n 成立
D.p(n) 对所有大于1的自然数 n 成立

【答案】B
【解析】因为命题 成立,那么它对 也成立,所以若 成立,则 对所有正偶数 成立,选B
【考点精析】通过灵活运用数学归纳法的步骤,掌握

  1. :A.n=1(或成立,推的基B.n=k成立; C.n=k+1也成立,完成两步,就可以断定任何自然数(n>=,)结论都成立

即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点 是椭圆上异于长轴端点的两点.

(1)求椭圆的方程;

(2)已知直线 ,且,垂足为 ,垂足为,若,且的面积是面积的5倍,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是二次函数,其图象过点(0,1),且在点(-2,f(-2))处的切线方程为2x+y+3=0
(1)求f(x)的表达式;
(2)求f(x)的图象与两坐标轴所围成图形的面积;
(3)若直线x=-t(0<t<1)把f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拟用长度为l的钢筋焊接一个如图所示的矩形框架结构(钢筋体积、焊接点均忽略不计),其中G、H分别为框架梁MN、CD的中点,MN∥CD,设框架总面积为S平方米,BN=2CN=2x米.

(1)若S=18平方米,且l不大于27米,试求CN长度的取值范围;
(2)若l=21米,求当CN为多少米时,才能使总面积S最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点

(1)求椭圆的方程;

(2)过点作直线与椭圆交于两点,连接为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对年龄段的人群随机抽取人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图,并求的值;

(2)在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取7人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的7人中随机选派2人作为正副队长,求所选派的2人没有第四组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两条高线所在直线的方程为2x﹣3y+1=0和x+y=0,顶点A(1,2),求:
(1)BC边所在直线的方程;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)若不等式 的解集 .求 的值;
(2)若 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当 时,讨论 f(x)的单调性;
(2)若 时, ,求 a 的取值范围.

查看答案和解析>>

同步练习册答案