精英家教网 > 高中数学 > 题目详情

【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:

不喜欢西班牙队

喜欢西班牙队

总计

40岁以上

50

不高于40

15

35

50

总计

100

已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.

参考公式与临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.702

2.706

3.841

5.024

6.635

7.879

10.828

【答案】

【解析】

由题意可知,可得abpq的值,由公式可得的观测值,可得结论.

从所有人中任意抽取一个取到喜欢西班牙队的人为事件

由已知得

所以

故有超过的把握认为年龄与西班牙队的被喜欢程度有关.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面DAC的中点.

1)求证:平面

2)求证:平面

3)设E上一点,试确定E的位置使平面平面BDE,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的边长为7,点MAB上,点NBC上,且AM=BN=3,现有一束光线从点M射向点N,光线每次碰到正方形的边时反射,则这束光线从第一次回到原点M时所走过的路程为( )

A. B. 60 C. D. 70

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点的直线与抛物线交于两点,且,抛物线的准线轴交于于点,且四边形的面积为,过的直线交抛物线于两点,且,点为线段的垂直平分线与轴的交点,则点的横坐标的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于 的函数

(I)试求函数的单调区间;

(II)若在区间 内有极值,试求a的取值范围;

(III) 时,若有唯一的零点 ,试求 .(注:为取整函数,表示不超过的最大整数,如 ;以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:(1)若为非零向量且,则;(2)已知向量,若,则;(3)若为单位向量,且,则三角形为等边三角形;其中正确的个数是(

A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线切于点,直线过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.

1)求抛物线的方程及点的坐标;

2)设直线与抛物线交于(异于点P)两个不同的点AB,直线PAPB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+2y+1=0l2-2x+y+2=0,它们相交于点A.

(1)判断直线l1l2是否垂直?请给出理由.

(2)求过点A且与直线l33x+y+4=0平行的直线方程.

查看答案和解析>>

同步练习册答案