【题目】如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD=3,AP=3,PC.
(1)求证:EF//平面PDC;
(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)取的中点为,连结,,四边形是平行四边形,,平面.
(2)由余弦定理求出,以为原点,在平面内过作的垂线为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的平面角的余弦值.
解:(1)证明:取的中点为,连结,,
,分别为、的中点,
,且,
又四边形为平行四边形,,且,
,且,四边形是平行四边形,
,平面,平面,
平面.
(2)平面,四边形为平行四边形,
点,分别为,的中点,,,
.,
,解得,
如图,以为原点,在平面内过作的垂线为轴,
为轴,为轴,建立空间直角坐标系,
则, , ,
, , ,
设平面的一个法向量,
,4,,,3,,
则,取,得,
平面的一个法向量,
设二面角的平面角为,
则.
二面角的平面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某同学在微信上查询到近十年全国高考报名人数、录取人数和山东夏季高考报名人数的折线图,其中年的录取人数被遮挡了.他又查询到近十年全国高考录取率的散点图,结合图表中的信息判定下列说法正确的是( )
A.全国高考报名人数逐年增加
B.年全国高考录取率最高
C.年高考录取人数约万
D.年山东高考报名人数在全国的占比最小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为F,直线l与C交于M,N两点.
(1)若l过点F,点M,N到直线y=2的距离分别为d1,d2,且,求l的方程;
(2)若点M的坐标为(0,1),直线m过点M交C于另一点N′,当直线l与m的斜率之和为2时,证明:直线NN′过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆: 上, 是椭圆的一个焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆C上不与点重合的两点, 关于原点O对称,直线, 分别交轴于, 两点.求证:以为直径的圆被直线截得的弦长是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了打击海盗犯罪,甲、乙、丙三国海军进行联合军事演习,分别派出一艘军舰A,B,C.演习要求:任何时刻军舰A、B、C均不得在同一条直线上.
(1)如图1,若演习过程中,A、B间的距离始终保持,B,C间的距离始终保持,求的最大值.
(2)如图2,若演习过程中,A,C间的距离始终保持,B、C间的距离始终保持.且当变化时,模拟海盗船D始终保持:到B的距离与A、B间的距离相等,,与C在直线AB的两侧,求C与D间的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系中椭圆C的方程为,以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程,若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦,交于点,且直线与的倾斜角互补,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级在开学时举行了入学检测.为了了解本年级学生寒假期间历史的学习情况,现从年级名文科生中随机抽取了名学生本次考试的历史成绩,得到他们历史分数的频率分布直方图如图.已知本次考试高三年级历史成绩分布区间为.
(1)求图中的值;
(2)根据频率分布直方图,估计这名学生历史成绩的平均分,众数;(每组数据用该组的区间中点值作代表)
(3)已知该学校每年高考有%的同学历史成绩在一本线以上,用样本估计总体的方法,请你估计本次入学检测历史学科划定的一本线该为多少分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com