精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中,若存在唯一的整数使得,则的取值范围是( )

A. B. C. D.

【答案】D

【解析】分析:设g(x)=ex(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣ag(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.

详解:设g(x)=ex(2x﹣1),y=ax﹣a,

由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,

∵g′(x)=ex(2x﹣1)+2ex=ex(2x+1),

当x<﹣时,g′(x)0,当x>﹣时,g′(x)>0,

当x=﹣时,g(x)取最小值﹣2

当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,

直线y=ax﹣a恒过定点(1,0)且斜率为a,

故﹣ag(0)=﹣1且g(﹣1)=﹣3e﹣1﹣a﹣a,解得≤a<1

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点的直线的参数方程是为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,试问是否存在实数,使得?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.

(1)求证:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)a=1,b=2,求函数在点(2,f(2))处的切线方程

(2)求函数的单调区间;

(3)若a<b任取存在实数m使恒成立m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①函数的单调增区间是

②若函数定义域为且满足,则它的图象关于轴对称;

③函数的值域为

④函数的图象和直线的公共点个数是,则的值可能是

⑤若函数上有零点,则实数的取值范围是.

其中正确的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.

(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;

(2)若已从年龄在的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.

(1)求概率的值;

(2)求的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,经过椭圆的右焦点的弦中最短弦长为2.

(1)求椭圆的的方程;

(2)已知椭圆的左顶点为为坐标原点,以为直径的圆上是否存在一条切线交椭圆于不同的两点,且直线的斜率的乘积为?若存在,求切线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的左、右焦点分别为F1,F2,离心率为,P为椭圆C上的动点,且满足面积的最大值为4.

(1)求动点Q的轨迹E的方程和椭圆C的方程.

(2)若点P不在x轴上,过点F2OP的平行线交曲线CM、N两个不同的点,求面积的最大值.

查看答案和解析>>

同步练习册答案