精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足数学公式,AB•AC=3.
(1)求△ABC的面积;  (2)若c=1,求a的值.

解:(1)∵

又A∈(0,π),
,由AB•AC=3得:bccosA=3,即bc=5,
所以△ABC的面积为=2;(6分)
(2)由bc=5,而c=1,所以b=5,又cosA=
根据余弦定理a2=b2+c2-2bc•cosA,
得:=2.(12分)
分析:(1)利用二倍角的余弦函数公式化简cosA,把cos的值代入求出cosA的值,由A为三角形的内角,利用同角三角函数间的基本关系求出sinA的值,又bc=5,根据三角形的面积公式即可求出三角形ABC的面积;
(2)由bc=5,且c=1,求出b的值,再由cosA的值,利用余弦定理即可求出a的值.
点评:此题考查了二倍角的余弦函数公式,同角三角函数间的基本关系,三角形的面积公式以及余弦定理,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案