精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1:y=x2与曲线C2:y=-(x-2)2,直线lC1C2都相切,求直线l的方程.

【答案】

【解析】

先设出直线与两曲线的切点坐标P(x1,)和Q(x2,-(x2-2)2),根据导数的几何意义分别求出切线的方程,再根据两切线重合得到关于的方程组,求得后可得切线方程

lC1相切于点P(x1,),与C2相切于点Q(x2,-(x2-2)2).

对于曲线C1,有y'=2x

所以与C1相切于点P的切线方程为y-=2x1(x-x1),

y=2x1x

对于曲线C2,有y'=-2(x-2),

所以与C2相切于点Q的切线方程为y+(x2-2)2=-2(x2-2)(x-x2),

y=-2(x2-2)x+

由题意得两切线重合,

所以由①②,解得

所以直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,左右焦点分别为F1 , F2 , 以椭圆短轴为直径的圆与直线 相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点F1、斜率为k1的直线l1与椭圆E交于A,B两点,过点F2、斜率为k2的直线l2与椭圆E交于C,D两点,且直线l1 , l2相交于点P,若直线OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD满足kOA+kOB=kOC+kOD , 求证:动点P在定椭圆上,并求出此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为x cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义.

(3)为进一步调查身高与生活习惯的关系,现从来自南方的这10名大学生中随机抽取2名身高不低于170 cm的学生,求身高为176 cm的学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是(
A.x∈R,2x>x2
B.若a>b,c>d,则 a﹣c>b﹣d
C.x∈R,ex<0
D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) =﹣k + ,m∈R,k、t为正实数.
(1)若 ,求m的值;
(2)若 ,求m的值;
(3)当m=1时,若 ,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:

分类

杂质高

杂质低

旧设备

37

121

新设备

22

202

根据以上数据,则(  )

A. 含杂质的高低与设备改造有关

B. 含杂质的高低与设备改造无关

C. 设备是否改造决定含杂质的高低

D. 以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C: =1(a>1)的左、右顶点分别为A、B,P是椭圆C上任一点,且点P位于第一象限.直线PA交y轴于点Q,直线PB交y轴于点R.当点Q坐标为(0,1)时,点R坐标为(0,2)

(1)求椭圆C的标准方程;
(2)求证: 为定值;
(3)求证:过点R且与直线QB垂直的直线经过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为.

(1)|MF|+|NF|的值;

(2)p=2,直线MNx轴交于点B,求点B的横坐标的取值范围.

查看答案和解析>>

同步练习册答案