精英家教网 > 高中数学 > 题目详情
设x轴、y轴正方向上的单位向量分别是
i
j
,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
OA1
=4
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)
.(其中O为坐标原点)
(I)求向量
OAn
及向量
OBn
的坐标;
(II)设an=
OAn
OBn
,求an的通项公式并求an的最小值;
(III)对于(Ⅱ)中的an,设数列bn=
sin
2
cos
(n-1)π
2
(n+1)an-6n+3
,Sn为bn的前n项和,证明:对所有n∈N*都有Sn
89
48
分析:(I)利用向量加法的三角形法则的推广,及已知条件①
OA1
=4
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)
.得到
OAn
OBn
的坐标;
(II)an=
OAn
OBn
=n-1+
4
n+1
,利用基本不等式可求an的最小值;
(III)当n=1,2,3,…时,sin
2
cos
(n-1)π
2
=1,0,1,0,…从而Sn=b1+b3+b5+b7+…,根据数列bn=
sin
2
cos
(n-1)π
2
(n+1)an-6n+3
,从而可得bn=
1
n2-6n+6
1
n2-6n+5
=
1
(n-1)(n-5)
=
1
4
[
1
(n-5)
-
1
(n-1)
]
,进而可证.
解答:解:(I)由题意,
OAn
=
OA1
+
A1A2
+…+
An-1An
=(n-1,4)
OBn
=
OB1
+
B1B2
+…+
Bn-1Bn
=(
i
+
1
2
j
)-(
1
2
-
1
3
+…+
1
n
-
1
n+1
)
j
=
i
+
1
n+1
j
=(1,
1
n+1
)

(II)an=
OAn
OBn
=n-1+
4
n+1

an=n-1+
4
n+1
=n+1+
4
n+1
-2≥2

即an的最小值为a1=2
(III)当n=1,2,3,…时,sin
2
cos
(n-1)π
2
=1,0,1,0,…
从而Sn=b1+b3+b5+b7+…,又bn=
0
1
n2-6n+6
n=2k
n=2k+1
b1=1,b3=-
1
3
,b5=1,当n≥7时,bn=
1
n2-6n+6
1
n2-6n+5
=
1
(n-1)(n-5)
=
1
4
[
1
(n-5)
-
1
(n-1)
]
∴Sn=b1+b3+b5+b7+…=b1+b3+b5+[b7+b11+b15+…]+[b9+b13+b17+…]<1-
1
3
+1+
1
4
[
1
2
-
1
6
+
1
6
-
1
10
+…]+
1
4
[
1
4
-
1
8
+
1
8
-
1
16
+…]<
5
3
+
1
8
+
1
16
=
89
48
点评:本题考查解决数列的问题关键是求出数列的通项,根据通项的特点,选择合适的方法来解决,在高考题中数列出现在解答题中,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x轴、y轴正方向上的单位向量分别为
i
j
,坐标平面上的点An、Bn(n∈N*)分别满足下列两个条件:①
OA1
=2
j
AnAn+1
=
i
+
j
;②
OB1
=2
i
BnBn+1
=(
3
4
)n×2
i
;求
OAn
OBn
的坐标;若四边形AnBnBn+1An+1的面积是an,求an(n∈N*)的表达式;对于(2)中的an,是否存在最小的自然数N,当n>N时恒有an+1<an成立?若存在,求出N的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x轴、y轴正方向上的单位向量分别是
i
j
,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
OA1
=16
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)

(1)求
OAn
OBn
的坐标;
(2)设an=
OAn
OBn
,求an的通项公式;
(3)对于(Ⅱ)中的an,是否存在最大的自然数M,对所有n∈N*都有an≥M成立?若存在,求M值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x轴、y轴正方向上的单位向量分别是
i
j
,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
OA1
=
j
AnA
n+1
=
i
+
j
;②
OB1
=3
i
BnBn+1
=(
2
3
)×3
i

(1)求
OAn
OBn
的坐标;
(2)若四边形AnBnBn+1An+1的面积是an,求an(n∈N*)的表达式;
(3)对于(2)中的an,是否存在最小的自然数M,对一切(n∈N*)都有an<M成立?若存在,求M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区二模)设x轴、y轴正方向上的单位向量分别是
i
j
,坐标平面上点列An、Bn(n∈N*)分别满足下列两个条件:①
OA1
=
j
AnAn+1
=
i
+
j
;②
OB1
=3
i
BnBn+1
=(
2
3
)
n
×3
i

(1)求
OA2
OA3
的坐标,并证明点An在直线y=x+1上;
(2)若四边形AnBnBn+1An+1的面积是an,求an(n∈N*)的表达式;
(3)对于(2)中的an,是否存在最小的自然数M,对一切n∈N*都有an<M成立?若存在,求M;若不存在,说明理由.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷