【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
科目:高中数学 来源: 题型:
【题目】已知,数列、满足:,,记.
(1)若,,求数列、的通项公式;
(2)证明:数列是等差数列;
(3)定义,证明:若存在,使得、为整数,且有两个整数零点,则必有无穷多个有两个整数零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】日照一中为了落实“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)试用x表示S,并求S的取值范围;
(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为,草坪的每平方米的造价为(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于任意都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为( )
A.22药物单位B.20药物单位C.12药物单位D.10药物单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,函数,,其中为常数,且,令函数为函数和的积函数.
(1)求函数的表达式,并求其定义域;
(2)当时,求函数的值域
(3)是否存在自然数,使得函数的值域恰好为?若存在,试写出所有满足条件的自然数所构成的集合;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=cos(asinx)﹣sin(bcosx)没有零点,则a2+b2的取值范围是( )
A.[0,1)B.[0,π2)C.D.[0,π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com