精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

1求函数的定义域;

2判断函数的奇偶性,并说明理由;

3判断函数在区间上的单调性,并加以证明.

【答案】(1)(2)函数F (x)是偶函数(3)在区间(0,1)上是减函数

【解析】试题分析:(1)由 可得函数f(x)+g(x)的定义域;

(2)根据F(﹣x)=F(x),可得:函数F (x)是偶函数

(3)F(x)=f(x)+g(x)在区间(0,1)上是减函数,作差可证明结论.

试题解析:

(1)要使函数有意义,则

解得,即函数的定义域为{x |};

(2),其定义域关于原点对称

∴函数F (x)是偶函数.

(3)在区间(0,1)上是减函数.

x1x2∈(0,1),x1 < x2,则

x1x2∈(0,1),x1 < x2

,即

x1x2(0,1),

,故,即

在区间(0,1)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四面体ABCD的顶点都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则(
A.MN的长度是定值
B.MN长度的最小值是2
C.圆M面积的最小值是2π
D.圆M、N的面积和是定值8π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)6cos2sinωx3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,BC为图象与x轴的交点,且△ABC为正三角形.

(1)ω的值及函数f(x)的值域;

(2)f(x0),且x0∈(),求f(x01)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣|2x+1|的最大值为m
(1)作函数f(x)的图象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为向量

,且.

1)求锐角B的大小;

2)在(1)的条件下,如果b=2,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若 =t
(1)当t= 时,求证:平面SAE⊥平面MNPQ;
(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为 ?若存在,求出实数t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(x﹣1)ex
(1)当a=﹣ 时,求f(x)在点P(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)当﹣ <a<﹣ 时,f(x)是否存在极值?若存在,求所有极值的和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出结果为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

同步练习册答案