精英家教网 > 高中数学 > 题目详情
已知抛物线M:y2=4x与圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交抛物线M于A,B两点,交圆N于C,D两点,若满足|AC|=|BD|的直线l恰有三条,则r的范围是
 
考点:圆与圆锥曲线的综合
专题:综合题,圆锥曲线的定义、性质与方程
分析:分l⊥x轴与l不与x轴垂直两种情况讨论,当l不与x轴垂直时,设直线l:x=my+1,与抛物线方程y2=4x联立,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),结合题意,可求得4
m2+1
=
2r
m2+1
,继而可得r>2,从而可得答案.
解答: 解:①当l⊥x轴时,过x=1与抛物线交于(1,土2),与圆交于(1,土r),满足题设.
②当l不与x轴垂直时,设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=
r2
m2+1

设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4
∴4
m2+1
=
2r
m2+1

即r=2(m2+1)>2,
即r>2时,l仅有三条.
故答案为:(2,+∞).
点评:本题考查直线与圆锥曲线的位置关系,考查等价转化思想与分类讨论思想,求得r=2(m2+1)是关键,考查综合运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站7海里,该轮船从B处沿正西方向航行3海里后到达D处观测站,已知观测站与检查站距离5海里,则此时轮船离港口A有
 
海里.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x3-3x2-12x+5在[0,3]上的最大值为M,最小值为m,则M-m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2px(p>0)的焦点为F,已知A,B为抛物线上的两个动点,且满足∠AFB=60°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则
|MN|
|AB|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Ω为不等式组
x≥1
y≥1
x-y+1≥0
x+y≤6
所表示的平面区域,E为圆(x-a)2+(y-b)2=r2(r>0)及其内部所表示的平面区域,若“点(x,y)∈Ω”是“点(x,y)∈E”的充分条件,则区域E的面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=
2
,则异面直线AD与BC所成的角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x-
2
x
(1≤x≤2)的最大值与最小值的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若Sn=n(n+1)(n∈N*).则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2ex(-2≤x≤2)的最大、最小值分别为(  )
A、
4
e2
,0
B、4e2
4
e2
C、4e2,0
D、2e2,0

查看答案和解析>>

同步练习册答案