精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=2sinxcosx+cos2x-sin2x(x∈R).求:
(1)求函数f(x)的最小正周期;
(2)函数f(x)的最小值及最小值时x的集合;
(3)函数的单调递增区间.

分析 (1)使用二倍角公式将函数化为f(x)=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),代入周期公式计算;
(2)由(1)的化简结果可知f(x)最小值为-$\sqrt{2}$,令2x-$\frac{π}{4}$=$-\frac{π}{2}$+2kπ解出f(x)取最小值时x的集合;
(3)令$-\frac{π}{2}$+2kπ≤2x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,解出f(x)的单调递增区间.

解答 解:(1)f(x)=2sinxcosx+cos2x-sin2x=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)令2x-$\frac{π}{4}$=$-\frac{π}{2}$+2kπ,解得x=-$\frac{π}{8}$+kπ,k∈Z.
∴f(x)的最小值是$-\sqrt{2}$,f(x)取最小值时x的集合为{x|x=-$\frac{π}{8}$+kπ,k∈Z}.
(3)令$-\frac{π}{2}$+2kπ≤2x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{8}$+kπ≤x≤$\frac{3π}{8}$+kπ,k∈Z.
∴f(x)的单调递增区间是[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ],k∈Z.

点评 本题考查了三角函数的图象与性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,A,B的坐标分别为(-1,2),(4,3),AC的中点M在y轴上,BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的极坐标方程为$ρsin({θ+\frac{π}{4}})=2\sqrt{2}$,圆C的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=-2+2sinθ\end{array}\right.({θ为参数})$.
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=\sqrt{3}sinφ\end{array}$(φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于两点A,B,求|CA|•|CB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=2cos(ωx-$\frac{π}{2}$)cos(${ωx+\frac{π}{6}}$)+2sin2ωx-1(ω>0),直线y=$\frac{1}{2}$与f(x)的图象交点之间最短距离为π.
(Ⅰ) 求f(x)的解析式及单调递增区间;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c若有(2a-c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx(x∈R)..
(1)当$x∈[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值;
(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=3,f(C)=2,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周四尺,高三尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图),米堆底部的弧长为4尺,米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(  )
A.7斛B.3斛C.9斛D.12斛

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数a,b,c,d成等差数列,且曲线y=3x-x3的极大值点坐标为(b,c),则a+d 等于(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用系统抽样从1001个编号中抽取容量为10的样本,则抽样分段间隔应为(  )
A.100.1
B.随机剔除一个个体后再重新编号,抽样分段间隔为$\frac{1000}{10}$=100
C.10.1
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△A BC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC则cosB等于(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案