精英家教网 > 高中数学 > 题目详情

【题目】学校有线网络同时提供AB两套校本选修课程。A套选修课播40分钟,课后研讨20分钟,可获得学分5B套选修课播32分钟,课后研讨40分钟,可获学分4分。全学期20周,网络每周开播两次,每次均为独立内容。学校规定学生每学期收看选修课不超过1400分钟,研讨时间不得少于1000分钟。两套选修课怎样合理选择,才能获得最好学分成绩

【答案】答案见解析.

【解析】试题分析:设选择两套课程分别为次, 为学分,根据两套选修课所得学分可得目标函数根据学校规定学生每学期收看选修课不超过分钟,研讨时间不得少于分钟及为正数,可得表示约束条件的二元一次不等式组,画出可行域,平移目标函数所表示的直线,结合最优解为整数点,可得最优解,从而可得结果.

试题解析设选择AB两套课程分别为XY次,z为学分,

目标函数

由方程组解得点A(15,25) , B(25,12.5)

由于目标函数的斜率与直线AB的斜率相等,因此在图中阴影线段AB上的整数点A1525)、C1920)、D2315)都符合题意,使得学分最高为175分。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为函数两个不同零点.

(1)若,且对任意,都有,求

(2)若,则关于的方程是否存在负实根?若存在,求出该负根的取值范围,若不存在,请说明理由

(3)若,且当的最大值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是 ( )

. 如果共面 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an , 数列{bn}的前n项和为Sn , 当 最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx, ), =(cosx,﹣1).
(1)当 时,求tan(x﹣ )的值;
(2)设函数f(x)=2( + ,当x∈[0, ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(Ⅰ)用d表示a1 , a2 , 并写出an+1与an的关系式;
(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q为真,求x的取值范围;
(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案