15£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬µãMÊÇÍÖÔ²ÉϵÄÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôNÊÇÍÖÔ²ÉÏÒ»µã£¬µãM£¬N²»Öغϣ¬Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌÊÇ2¦Ëx-2y+1=0£¬Çó¡÷0MNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨ÒåºÍ·¶Î§£¬¿ÉµÃa+c=2+$\sqrt{2}$£¬bc=1£¬a2-b2=c2£¬½â·½³Ì¿ÉµÃa£¬b£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ¿ÉÉèÖ±ÏßMNµÄ·½³ÌΪy=-$\frac{1}{¦Ë}$x+t£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÔÙÓÉÖеã×ø±ê¹«Ê½£¬¿ÉµÃMNµÄÖе㣬´úÈ봹ֱƽ·ÖÏß·½³Ì¿ÉµÃt=-$\frac{1}{2}$-$\frac{1}{{¦Ë}^{2}}$£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃOµ½Ö±ÏßMNµÄ¾àÀ룬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¿ÉµÃ¡÷OMNµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬
¼´Îª|MF1|+|MF2|+|F1F2|=2a+2c=2$\sqrt{2}$+2£¬
ÓÉ¡÷MF1F2Ãæ»ýΪ$\frac{1}{2}$|yM|•2c=c|yM|¡Übc£¬
¼´ÓÐbc=1£¬a2-b2=c2£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌÊÇ2¦Ëx-2y+1=0£¬
¼´ÓÐÖ±ÏßMNµÄ·½³ÌΪy=-$\frac{1}{¦Ë}$x+t£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬£¨2+¦Ë2£©y2-2¦Ë2ty+¦Ë2t2-2=0£¬
¡÷=4¦Ë4t2-4£¨2+¦Ë2£©£¨¦Ë2t2-2£©£¾0£¬
y1+y2=$\frac{2{¦Ë}^{2}t}{2+{¦Ë}^{2}}$£¬y1y2=$\frac{{¦Ë}^{2}{t}^{2}-2}{2+{¦Ë}^{2}}$£¬
MNÖеãΪ£¨$\frac{2t¦Ë}{2+{¦Ë}^{2}}$£¬$\frac{{¦Ë}^{2}t}{2+{¦Ë}^{2}}$£©£¬
´úÈëMNµÄ´¹Ö±Æ½·ÖÏ߿ɵã¬t=-$\frac{1}{2}$-$\frac{1}{{¦Ë}^{2}}$£¬
¼´ÓÐy1+y2=-1£¬y1y2=$\frac{{¦Ë}^{2}{t}^{2}-2}{2+{¦Ë}^{2}}$=$\frac{£¨2-{¦Ë}^{2}£©^{2}}{4{¦Ë}^{2}£¨2+{¦Ë}^{2}£©}$£¬
¼´ÓÐ|MN|=$\sqrt{1+{¦Ë}^{2}}$|y1-y2|=$\sqrt{1+{¦Ë}^{2}}$•$\sqrt{1-4•\frac{£¨2-{¦Ë}^{2}£©^{2}}{4{¦Ë}^{2}£¨2+{¦Ë}^{2}£©}}$
=$\sqrt{1+{¦Ë}^{2}}$•$\sqrt{\frac{6{¦Ë}^{2}-4}{{¦Ë}^{2}£¨2+{¦Ë}^{2}£©}}$£¬
ÓÖOµ½Ö±ÏßMNµÄ¾àÀëΪd=$\frac{|¦Ët|}{\sqrt{1+{¦Ë}^{2}}}$=$\frac{2+{¦Ë}^{2}}{2|¦Ë|\sqrt{1+{¦Ë}^{2}}}$£¬
Ôò¡÷0MNÃæ»ýΪS=$\frac{1}{2}$d•|MN|=$\frac{1}{4}$•$\sqrt{\frac{£¨6{¦Ë}^{2}-4£©£¨2+{¦Ë}^{2}£©}{{¦Ë}^{4}}}$
=$\frac{1}{4}$•$\sqrt{6-\frac{8}{{¦Ë}^{4}}+\frac{8}{{¦Ë}^{2}}}$=$\frac{1}{4}$•$\sqrt{8-8£¨\frac{1}{{¦Ë}^{2}}-\frac{1}{2}£©^{2}}$£¬
µ±¦Ë=¡À$\sqrt{2}$£¬¡÷OMNµÄÃæ»ýÈ¡µÃ×î´óÖµ$\frac{\sqrt{2}}{2}$£¬Âú×ãÅбðʽ´óÓÚ0£®
¹Ê¡÷OMNµÄÃæ»ýÈ¡µÃ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄ¶¨ÒåºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÇó½âÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êý$f£¨x£©=a£¨\frac{1}{{{a^x}-1}}+\frac{1}{2}£©$£¬ÆäÖÐa£¾1£®
£¨1£©Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄÆæżÐÔ£»
£¨2£©Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¼¯ºÏA={-1£¬1}£¬B={m|m=x+y£¬x¡ÊA£¬y¡ÊA}£¬ÔòÓÃÁоٷ¨±íʾ¼¯ºÏB={0}£»Èô¼¯ºÏM={-1£¬1£¬3}£¬N={a+2£¬a2+4}Âú×ãM¡ÉN={3}£¬ÔòʵÊýa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÆæÊýf£¨x£©=lg[£¨m2-3m+2£©x2+2£¨m-1£©x+5]µÄÖµÓòΪR£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[2£¬$\frac{9}{4}$]B£®[2£¬$\frac{9}{4}$£©C£®£¨-¡Þ£¬1£©¡È£¨$\frac{9}{4}$£¬+¡Þ£©D£®£¨-¡Þ£¬1]¡È£¨$\frac{9}{4}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÅжÏÏÂÁк¯ÊýµÄÆæżÐÔ£º
£¨1£©f£¨x£©=$\sqrt{2}$sin£¨2x+$\frac{5}{2}$¦Ð£©£»
£¨2£©f£¨x£©=$\sqrt{2sinx-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®×÷¶ÌÖ᳤Ϊ2bµÄÍÖÔ²µÄÄÚ½Ó¾ØÐΣ¬Èô¸Ã¾ØÐÎÃæ»ýµÄ×î´óÖµµÄÈ¡Öµ·¶Î§ÊÇ[3b2£¬4b2]£¬ÔòÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{\sqrt{3}}{2}$£¬1£©B£®[$\frac{\sqrt{5}}{3}$£¬$\frac{\sqrt{3}}{2}$]C£®£¨0£¬$\frac{\sqrt{5}}{3}$]D£®£¨0£¬$\frac{\sqrt{3}}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èý½ÇÐÎABCÖУ®Èôsin£¨A+B-C£©=sin£¨A-B+C£©£¬ÔòÕâ¸öÈý½ÇÐεÄÐÎ״ΪµÈÑüÈý½ÇÐλòÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¶¨µãA£¨3£¬1£©£¬PÊÇÍÖÔ²$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$ÉϵÄÈÎÒ»µã£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×óÓÒ½¹µã£¬Ôò|PF2|+|PA|µÄ×îСֵΪ10-5$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ¡÷ABCÖУ¬ÈýÄÚ½ÇA£¬B£¬CÂú×ã2B=A+C£¬Çó½â£ºtan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸