精英家教网 > 高中数学 > 题目详情
6.设a∈{-2,-$\frac{3}{5}$,-$\frac{1}{2}$,-$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},已知幂函数y=xa是奇函数,且在区间(0,+∞)上是减函数,则满足条件的a的值为$-\frac{3}{5}$或$-\frac{1}{3}$.

分析 利用幂函数的奇偶性与单调性即可判断出.

解答 解:∵幂函数y=xa是奇函数,且在区间(0,+∞)上是减函数,a∈{-2,-$\frac{3}{5}$,-$\frac{1}{2}$,-$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},
∴a=$-\frac{3}{5}$或$-\frac{1}{3}$.
故答案为:$-\frac{3}{5}$或$-\frac{1}{3}$.

点评 本题考查了幂函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,则f[f(10)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足${a_1}=1,{a_{n+1}}=f(\frac{1}{a_n}),(n∈{N^*})$
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_{n-1}}{a_n}}}(n≥2),{b_1}$=3,数列{bn}的前n项和为Sn,证明:对一切n∈N*,都有Sn<$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设x∈[2,8],求函数f(x)=$\frac{1}{2}$log${\;}_{\frac{1}{2}}$($\frac{1}{2}$x)•log${\;}_{\frac{1}{2}}$($\frac{1}{4}$x)的最值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在三棱锥S-ABC中,P、Q分别是△SAC和△SAB的重心,试判断BC与平面APQ的位置关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=x+1在区间[1,3]上的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tan($\frac{π}{4}$+α)=2,tan(α-β)=$\frac{1}{2}$,α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0).
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(3)求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列句子中,能确定一个集合的是(  )
A.难解的题目B.一年级全体学生
C.所有很厚的书D.一年级所有高个子男生

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2•a2x-1-3(a>0,a≠1)过定点($\frac{1}{2}$,-1).

查看答案和解析>>

同步练习册答案