【题目】已知函数,其中,为自然对数的底数.
(1)若函数的图象在处的切线与直线垂直,求的值;
(2)关于的不等式在上恒成立,求的取值范围;
(3)讨论函数极值点的个数.
【答案】(1)-1;(2);(3)详见解析.
【解析】
(1)求出函数的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为,解方程可得的值;
(2)由题意可得,令,运用参数分离和构造,求得单调性,可得的范围;
(3)求出函数的导数,令,由,即为,运用参数分离,令,可得,求得的单调区间,可得的范围,即有的极值点的个数.
(1)函数的导数为:
图象在处的切线斜率为
切线与直线垂直,可得
解得
(2)关于的不等式在上恒成立
即为在恒成立.
即有
令,可得
令,
即在递减
当时,,可得
可得,即的取值范围是
(3)由的导数为
令,由
即为
若时,方程不成立
若时,
令,可得
当即时,递减;即时,递增;
时,递减.
则当时,
显然,递增;或时,递减
即有为极值点;
当时,有一个解,有一个极值点;
当时,有三个解,有三个极值点
综上可得,时,有一个极值点;
时,有一个极值点;
时,有三个极值点
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数图象上存在两个点A,B关于原点对称,则点对称为函数的“友好点对”且点对与可看作同一个“友好点对”若函数其中e为自然对数的底数,恰好有两个“友好点对”则实数m的取值范围为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2,…,17)建立模型
①;
根据2010年至2016年的数据(时间变量的值依次为1,2,…,7)建立模型
②.
利用这两个模型,该地区2018年的环境基础设施投资额的预测值分别为_____,_____;并且可以判断利用模型_____得到的预测值更可靠.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.
(I)求椭圆的方程;
(II)设与圆相切的直线交椭圆于,两点(为坐标原点),的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线C1:y=cosx,曲线C2:y=sin2x,下列说法正确的是( )
A.将C1上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到C2
B.将C1上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到C2
C.将C1上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向右平移个单位,得到C2
D.将C1上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向右平移个单位,得到C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,bsinA=cosB.
(1)求角B的大小;
(2)若b=2,△ABC的面积为,求a,c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数为5组: , , , , ,得到如图所示的频率分布直方图:
(Ⅰ)写出的值;
(Ⅱ)求在抽取的40名学生中月上网次数不少于15次的学生人数;
(Ⅲ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com