精英家教网 > 高中数学 > 题目详情
在三棱锥PABC中,不能证明的条件是(  )
A.
B.
C.
D.
C
可得 , 故可得 ,可以排除A;
可得 ,故可得 ,可以排除B;,可得 , 故可得 ,排除D;
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,,,,.

(1)求证:平面⊥平面
(2)求点C到平面的距离;
(3)求PC与平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,分别是棱
的中点.求证:
(1)直线∥平面
(2)直线⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D为棱AC的中点,E为棱A1C1的中点,且AB=BC=BB1=1.
(1)求证:CE平面BA1D.
(2)求二面角A1-BD-C的余弦值.
(3)棱CC1上是否存在一点P,使PD⊥平面A1BD,若存在,试确定P点位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,D、E分别是BC、AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是(  )
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,则的一个必要条件是(    )
A.B.
C.D.成等角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题不正确的是(    )
A.若,则B.若,则
C.若,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:
①若α∥β,α⊥γ,则β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ;
③若直线l与平面α内的无数条直线垂直,则直线l与平面α垂直;
④若α内存在不共线的三点到β的距离相等,则平面α平行于平面β;
上面命题中,真命题的序号为________(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案