精英家教网 > 高中数学 > 题目详情

【题目】(1) 为何值时, .①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数有4个零点,求实数的取值范围.

【答案】(1)(-5,-1);(2).

【解析】试题分析:(1)有且仅有一个零点方程有两个相等实根Δ=0;②设f(x)的两个零点分别为,则=-2m =3m+4.由题意,知

(2)数形结合,作出g(x)=|4xx2|和h(x)=-a的图象即可.

试题解析:

(1)①有且仅有一个零点方程有两个相等实根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.

②设f(x)的两个零点分别为

=-2m =3m+4.

由题意,知

∴-5<m<-1.故m的取值范围为(-5,-1).

(2)令f(x)=0,得|4xx2|+a=0,

则|4xx2|=-a.

g(x)=|4xx2|,

h(x)=-a.

作出g(x),h(x)的图象.

由图象可知,当0<-a<4,

时,g(x)与h(x)的图象有4个交点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);

(2)若对任意恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在路边安装路灯,路宽为,灯柱长为米,灯杆长为1米,且灯杆与灯柱成角,路灯采用圆锥形灯罩,其轴截面的顶角为,灯罩轴线与灯杆垂直.

⑴设灯罩轴线与路面的交点为,若米,求灯柱长;

⑵设米,若灯罩截面的两条母线所在直线一条恰好经过点,另一条与地面的交点为(如图2)

(图1) (图2)

(ⅰ)求的值;(ⅱ)求该路灯照在路面上的宽度的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为: .估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育运动时间与性别有关


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高一年级有男生人,女生人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了名学生的测评结果,并作出频数统计表如下:

等级

优秀

合格

尚待改进

频数

15

5

表一:男生

等级

优秀

合格

尚待改进

频数

15

3

表二:女生

(1)从表二的非优秀学生中随机选取人交谈,求所选人中恰有人测评等级为合格的概率;

(2)由表中统计数据填写列联表,试采用独立性检验进行分析,能否在犯错误的概率不超过的前提下认为“测评结果优秀与性别有关”,参考数据与公示: ,其中

临界值表:

0.10

0.05

0.01

2.70

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂今年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x(万件)与年促销费m(万元)(m≥0)满足x=3-.已知今年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将今年该产品的利润y万元表示为年促销费m(万元)的函数;

(2)求今年该产品利润的最大值,此时促销费为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)已知常数解关于的不等式

(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3ax-1,a≠0.

(1)求f(x)的单调区间;

(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形与正三角形的边长均为2,它们所在平面互相垂直, ,且

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案