【题目】某公司为确定下一年度投入某种产品的宜传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
x(万元) | 2 | 4 | 5 | 3 | 6 |
y(单位:t) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程.
(2)已知这种产品的年利润(万元)与x,y的关系为根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,预测该产品的年销售量及年利润;
②估计该产品的年利润与年宣传费的比值的最大值.
附:回归方程中的斜率和截距的最小二乘估计公式分别为.
参考数据:.
科目:高中数学 来源: 题型:
【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于“追光族”与“性别”有关;
属于“追光族” | 属于“观望者” | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于“追光族”现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系中的坐标原点为极点,轴的正半抽为极轴,建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数).
(1)求曲线的直角坐标方程;
(2)若直线与曲线交于、两点,且,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的个数是( )
①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;
②为异面直线,则过且与平行的平面有且仅有一个;
③直四棱柱是直平行六面体;
④两相邻侧面所成角相等的棱锥是正棱锥.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com