精英家教网 > 高中数学 > 题目详情

【题目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,则m的范围是(
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)

【答案】C
【解析】解:当m﹣1=0,即m=1时,原不等式可化为2>0恒成立,满足不等式解集为R, 当m﹣1≠0,即m≠1时,
若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,

解得:1<m<9.
综上所述,m的取值范围为[1,9).
故选:C.
若m﹣1=0,即m=1时,满足条件,若m﹣1≠0,即m≠1,若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,则对应的函数的图象开口朝上,且与x轴没有交点,进而构造关于m的不等式,进而得到m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值
(2)已知f(1)= ,函数g(x)=a2x+a2x﹣2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)问的条件下,试问是否存在正整数λ,使得f(2x)≥λf(x)对任意x∈[﹣ ]恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,1), =(1,cosθ),﹣ <θ . (Ⅰ)若 ,求tanθ的值.
(Ⅱ)求| + |的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=(a+1)x2+1(a>0)的图象恒过定点A,且点A又在函数 的图象上.
(1)求实数a的值;
(2)解不等式f(x)<
(3)函数h(x)=|g(x+2)﹣2|的图象与直线y=2b有两个不同的交点时,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别是a,b,c.满足2acosC+ccosA=b.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB+sinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)请在直角坐标系中画出函数f(x)的图象,并写出该函数的单调区间;
(2)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租地建仓库,每月土地占用费y1与车库到车站的距离x成反比,而每月的库存货物的运费y2与车库到车站的距离x成正比.如果在距离车站10公里处建立仓库,这两项费用y1和y2分别为2万元和8万元.求若要使得这两项费用之和最小时,仓库应建在距离车站多远处?此时最少费用为多少万元?

查看答案和解析>>

同步练习册答案