精英家教网 > 高中数学 > 题目详情
(2011•太原模拟)如图,已知AB为半圆O的直径,BE、CD分别为半圆的切线,切点分别为B、C,DC的延长线交BE于F,AC的延长线交BE于E.AD⊥DC,D为垂足.
(1)求证:A、D、F、B四点共圆;
(2)求证:EF=FB.
分析:(1)由FB是圆O的切线,知∠ABF=90°,由AD⊥DC,知∠ADF=90°,由此能够证明A,D,F,B四点共圆.
(2)连接BC,则BC⊥AC,由DF是半圆的切线,知∠DCA=∠ABC,由∠DCA=∠ECF,知ECF=∠ABC,在Rt△ABE中,BC⊥AE,∠ECF=∠E,EF=FC,由FC,FB是半圆的切线,能够证明EF=FB.
解答:证明:(1)∵FB是圆O的切线,
∴∠ABF=90°,
又∵AD⊥DC,
∴∠ADF=90°,
∴A,D,F,B四点共圆.
(2)连接BC,则BC⊥AC,
∵DF是半圆的切线,
∴∠DCA=∠ABC,
∵∠DCA=∠ECF,
∴ECF=∠ABC,
在Rt△ABE中,BC⊥AE,
∴∠ABC=∠E,
∴∠ECF=∠E,∴EF=FC,
∵FC,FB是半圆的切线,
∴FC=FB,
∴EF=FB.
点评:本题考查四点共圆的证明和考查线段相等的证明,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•太原模拟)函数f(x)=lg(x+1)的定义域是
(-1,+∞)
(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)在平面直角坐标系xOy中,点P(x,y)是椭圆
x23
+y2=1上的一个动点,则S=x+y的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,
2
),则四边形ABCD的面积的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)若集合A={x|0≤x≤2},B={x|x2>1},全集U=R,则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知集合A={x|x2-2x-3≤0},集合B={x|(x-m+2)(x-m-2)≤0}.
(1)若A∩B=[0,3],求实数m的值;
(2)若全集U=R,A⊆CUB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案