精英家教网 > 高中数学 > 题目详情
已知抛物线与直线相切于点
(Ⅰ)求的解析式;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.

(Ⅰ);  (Ⅱ)实数的取值范围是

(Ⅰ)依题意,有

因此,的解析式为;     …………………6分
(Ⅱ)由)得),解之得

由此可得

所以实数的取值范围是.   …………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知线段AB过轴上一点,斜率为,两端点A,B到轴距离之差为
(1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程;
(2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线L:的焦点F的直线l交此抛物线于A、B两点,
①求
②记坐标原点为O,求△OAB的重心G的轨迹方程.
③点为抛物线L上一定点,M、N为抛物线上两个动点,且满足,当点M、N在抛物线上运动时,证明直线MN过定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).
(1)求该抛物线上纵坐标为的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于MN两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线过点(-11,13),则抛物线的标准方程是(    )
A.y2=xB.y2=-x
C.y2=-x或x2=yD.x2=-y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线焦点的直线交抛物线于两点,已知为原点,
重心的纵坐标为                

查看答案和解析>>

同步练习册答案