精英家教网 > 高中数学 > 题目详情
1.设a∈R,且α≠0,试比较a与$\frac{1}{a}$的大小.

分析 分类讨论即可得出.

解答 解:当a=$\frac{1}{a}$时,即a=±1,
当a>$\frac{1}{a}$时,即$\frac{{a}^{2}-1}{a}$>0,即a(a+1)(a-1)>0,解得-1<a<0,或a>1,
当a<$\frac{1}{a}$时,即$\frac{{a}^{2}-1}{a}$<0,即a(a+1)(a-1)<0,解得0<a<1,或a<-1,
所以:当a=±1时,a=$\frac{1}{a}$,
当-1<a<0,或a>1时,a>$\frac{1}{a}$,
当0<a<1,或a<-1时,a<$\frac{1}{a}$.

点评 本题考查了比较两个数的大小、分类讨论等基础知识与方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知直线2x-y+1=0与点(1,-2)为圆心的圆相交于A,B两点,且|AB|=4,则此圆的标准方程是(  )
A.(x-1)2+(y+2)2=16B.(x-1)2+(y+2)2=9C.(x+1)2+(y-2)2=9D.(x+1)2+(y+2)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥D-ABC中,DA⊥AC,DA⊥BC,AC=BC=1,AB=$\sqrt{3}$,AD=$\sqrt{2}$,求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.确定集合A与集合B之间的关系:A={(x,y)|x+y=2,x∈N,y∈N},B={(2,0),(1,1),(0,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=3$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{b}$=4$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{a}$,|$\overrightarrow{c}$|=1,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)满足3f(x)+f($\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如表中第一行和第一列都是首项为4,公差为3的等差数列,从第二行开始,以后各行也是等差数列,公差分别为5,7,9,11,13…,记第i行第j列的数为aij,求aij(用i,j表示)
 4 7 1013 1619 22 
 7 12 1722 27 32 37 
 10 17 2431 38 45 52 
 13 22 3140 49 58 67 
 16 27 3849 60 71 82 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)-3f(-x)=2x+6,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列1,0,1,0,…的一个通项公式是(  )
A.${a}_{n}=\frac{1+(-1)^{n}}{2}(n∈{N}_{+})$B.${a}_{n}=\frac{-1+(-1)^{n}}{2}(n∈{N}_{+})$
C.${a}_{n}=\frac{1-(-1)^{n+1}}{2}(n∈{N}_{+})$D.${a}_{n}=\frac{1-(-1)^{n}}{2}(n∈{N}_{+})$

查看答案和解析>>

同步练习册答案