精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,侧面底面分别为的中点.

1)求证:平面

2)求二面角的余弦值;

3)在线段上是否存在一点,使与平面所成角的正弦值为,若存在求出的长,若不存在说明理由.

【答案】1)证明见解析;(23)存在;

【解析】

1)取中点,可证明,从而证明,进而可证明平面;(2)分别以轴建立空间直角坐标系,求出各个点的坐标,利用向量法可求出二面角的余弦值;(3)假设存在点,利用向量法求与平面所成角的正弦值为点的坐标,判断是否在线段上,进而求出的长.

1)证明:取中点,连接

,即

所以为平行四边形,平面平面,因此平面.

2)解:因为的中点,所以,又因为侧面底面且交线为,所以平面

分别以轴建立空间直角坐标系.

平面的法向量

,设平面的法向量

,得.

所以,因此二面角的余弦值为.

3)解:设

平面的法向量

所以

解得(舍),所以存在

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载:刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF//平面ABCDEF与平面ABCD的距离为2,该刍甍的体积为(

A.6B.C.D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形是菱形,E上一点,且,设.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆

(1)若椭圆的离心率为,求的值;

(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.

根据行业质量标准规定,该核心部件尺寸x满足:|x12|≤1为一级品,1<|x12|≤2为二级品,|x12|>2为三级品.

(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[1215]的产品,记ξ为这2件产品中尺寸x∈[1415]的产品个数,求ξ的分布列和数学期望;

(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;

(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”为评估此类解答导致的失分情况,某市教研室做了项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望;

2)本次数学考试有6个解答题,每题满分12分,同学乙6个题的解答均为“类解答”.

①记乙同学6个题得分为的题目个数为计算事件的概率.

②同学丙的前四题均为满分,第5题为“类解答”,第6题得8.以乙、丙两位同学解答题总分均值为依据,谈谈你对“类解答”的认识.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块AB,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|2|MB|1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.

1)将以射线Bx为始边,射线BM为终边的角xBM记为φ0≤φ),用表示点M的坐标,并求出C的普通方程;

2)已知过C的左焦点F,且倾斜角为α0≤α)的直线l1C交于DE两点,过点F且垂直于l1的直线l2C交于GH两点.|GH|依次成等差数列时,求直线l2的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

1)求的值;

2)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于,估计的概率;

3)在抽取的名学生中,规定:比赛成绩不低于分为优秀,比赛成绩低于分为非优秀.请将下面的列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面平面为棱上一动点,点的中点.

1)求证:

2)若,问是否存在点E,使得二面角的余弦值为?若存在,求出点E的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案