精英家教网 > 高中数学 > 题目详情
14.已知$sin(θ+\frac{π}{3})=\frac{2}{3}$,则$cos(θ-\frac{π}{6})$=$\frac{2}{3}$.

分析 由已知,利用诱导公式化简所求即可计算得解.

解答 解:∵$sin(θ+\frac{π}{3})=\frac{2}{3}$,
∴$cos(θ-\frac{π}{6})$=cos($\frac{π}{6}$-θ)=cos[$\frac{π}{2}$-($θ+\frac{π}{3}$)]=$sin(θ+\frac{π}{3})=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在原点,焦点在x轴上,且经过点P(-1,2)的拋物线的标准方程是(  )
A.y2=$\frac{1}{4}$xB.y2=-$\frac{1}{4}$xC.y2=-4xD.x2=-4y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有下列四个说法:
①命题“$?{x_0}∈R,{x_0}^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”;
②已知命题p∧q为假,则p,q都假;
③命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;
④“x=-1”是“x2-5x-6=0”的必要不充分条件;
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(1)求f[f(0)+4]的值;
(2)求证:f(x)在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx在点(-1,f(-1))处的切线与x轴平行,在点(1,f(1))处切线的斜率为1,又对任意x∈R,都有x≤f'(x)恒成立.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)=12f(x)-4x2-3x-3在$[{\frac{1}{2},2}]$上的最大值;
(Ⅲ)设h(x)=$\frac{m}{x}$+x•lnx,若对任意x1,x2∈$[{\frac{1}{2},2}]$,都有h(x1)≥g(x2).求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为双曲线E的两个焦点,且双曲线E的离心率是2.直线AC的斜率为k.则|k|等于(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知椭圆$\frac{x^2}{169}+\frac{y^2}{144}=1$的两个焦点为F1、F2,椭圆上有一点P到F1的距离为10,则△PF1F2的面积为48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在面积为1的△ABC的边AB上任取一点P,则△PBC的面积不小于$\frac{1}{3}$的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案