【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.
根据行业质量标准规定,该核心部件尺寸x满足:|x﹣12|≤1为一级品,1<|x﹣12|≤2为二级品,|x﹣12|>2为三级品.
(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[12,15]的产品,记ξ为这2件产品中尺寸x∈[14,15]的产品个数,求ξ的分布列和数学期望;
(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;
(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是,,.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.
【答案】(Ⅰ)分布列见解析,;(Ⅱ)不对剩余产品进行逐一检验,理由见解析;(Ⅲ)应选购乙设备,理由见解析.
【解析】
(I)利用频率分布直方图中的频率(概率)求出尺寸在的产品件数,及在的产品件数,得ξ的可能取值为0,1,2,分别计算出概率得概率分布列,由分布列计算出期望;
(II)三级品的概率为(0.1+0.075)×1=0.175,计算对剩余产品逐一检验和对剩余产品不检验需支付的费用,比较后可得;
(III)利用频率(概率)计算出两种方案的利润期望,比较可得.
(I)抽取的40件产品中,产品尺寸x∈[12,15]的件数为:40×[(0.2+0.175+0.075)×1]=18,
其中x∈[14,15]的产品件数为40×(0.075×1)=3,
∴ξ的可能取值为0,1,2,
∴P(ξ=0),P(ξ=1),P(ξ=2),
∴ξ的分布列为:
∴Eξ=012.
(II)三级品的概率为(0.1+0.075)×1=0.175,
若对剩余产品逐一检验,则厂家需支付费用50×100=5000;
若对剩余产品不检验,则厂家需支付费用50×10+200×90×0.175=3650,
∵5000>3650,
故不对剩余产品进行逐一检验.
(III)设甲设备生产一件产品的利润为y1,乙设备生产一件产品的利润为y2,
则E(y1)=500×(0.3+0.2)+400×(0.150+0.175)+200×0.175=415,
E(y2)=500400200420.
∵E(y1)<E(y2).
∴应选购乙设备.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求证:当x∈(1,)时,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且仅有1个极值点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用
A.288种B.264种C.240种D.168种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中中,曲线C的参数方程(为参数,).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)设P是曲线C上的一个动点,当时,求点P到直线的距离的最大值;
(2)若曲线C上所有的点均在直线的右下方,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,有下述四个结论:
①是周期为的函数;
②在单调递增;
③在上有三个零点;
④的值域是.
其中所有正确结论的编号是( )
A.②③B.①③C.①③④D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com