精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1,l2.

求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.

【答案】(1) m = – 1 (2) m≠– 1m≠3(3)

【解析】

利用两直线平行时,一次项系数之比相等,但不等于常数项之比,求出m的值

利用两条直线相交时,由方程组得到的一次方程有唯一解,一次项的系数不等于0

当两条直线垂直时,斜率之积等于﹣1,解方程求出m的值.

(1) 得:m = – 1m = 3

m = – 1时,l1,l2,即

∴ l1∥l2

m = 3时,l1,l2,此时l1l2重合

∴ m = – 1时,l1l2平行

(2) 得:m≠– 1m≠3

∴ m≠– 1m≠3时,l1l2相交

(3) 得:

时,l1l2垂直

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①方程有一个正实根,一个负实根,则

②函数是偶函数,但不是奇函数;

③命题,则的否命题为,则”;

④命题,使得的否定是,都有”;

的充分不必要条件.

正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中,分别是的中点,

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

2已知,圆轴相交于两点(点在点的右侧).过点任作一条倾斜角不为0的直线与圆相交于两点问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为(  )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a3 , a5 , a15成等比数列,若a1=3,Sn为数列an的前n项和,则anSn的最小值为(
A.0
B.﹣3
C.﹣20
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用部分自然数构造如图的数表:用表示第行第个数,使得,每行中的其他各数分别等于其“肩膀”上的两个数之和,设第行中的各数之和为.

已知,求的值;

,证明:是等比数列,并求出的通项公式;

数列中是否存在不同的三项恰好成等差数列?若存在,求出的关系,若不存在,说明理由.

查看答案和解析>>

同步练习册答案