精英家教网 > 高中数学 > 题目详情

【题目】如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路

(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)

(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长。

【答案】(1)445米;(2)在弧的中点处

【解析】

1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用表示,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.

(1)方法一:设该扇形的半径为米,连接. 由题意,

(米),(米),

中,

即,

解得(米)

方法二:连接,作,交,由题意,得(米),

(米), ,在中,

.

(米). .

在直角 中,(米),

(米).

(2)连接,设

中,由正弦定理得:

于是

所以当时,最大为 ,此时在弧的中点处。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率e= , 原点到过A(a,0),B(0,﹣b)两点的直线的距离是
(1)求椭圆的方程;
(2)已知直线y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性;

(2)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为圆

(1)若直线过点,且被圆截得的弦长为,求直线的方程;

(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢看书是否与性别有关,某校调查小组就“是否喜欢看书”这个问题,在全校随机调研了100名学生.

(1)完成下列列联表:

喜欢看书

不喜欢看书

合计

女生

15

50

男生

25

合计

100

(2)能否在犯错率不超过0.025的前提下认为“喜欢看书与性别有关”.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若规定:75(包含75分)分以上为良好,90分(包含90分)以上为优秀,要从分数在良好以上的试卷中任取两份分析学生失分情况,设在抽取的试卷中,分数为优秀的试卷份数为X,求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣3|+|x﹣4|.
(1)求函数 的定义域;
(2)若存在实数x满足f(x)≤ax﹣1,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱柱中,,则与平面所成角的正弦值为__________

查看答案和解析>>

同步练习册答案