精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S20的值是(  )
A.60B.70C.$\frac{170}{3}$D.$\frac{160}{3}$

分析 首先根据题意求出S10=10,S30=130,再根据Sn,S2n-Sn,S3n-S2n也是等差数列,得到S20

解答 解:因为S30=13S10,S10+S30=140,
所以S10=10,S30=130.
∵数列{an}为等差数列,
∴Sn,S2n-Sn,S3n-S2n也是等差数列,即S10,S20-S10,S30-S20也是等差数列,
即,2(S20-10)=10+130-S20
所以S20=$\frac{160}{3}$.
故选:D.

点评 本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列中Sn,S2n-Sn,S3n-S2n也是等差数列的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx,g(x)=-$\frac{1}{x}$.
(1)判断曲线y=f(x)与曲线y=g(x)(x<0)的公共切线(与两曲线均相切)的条数.
(2)若函数F(x)=af(x)-g(x)在区间[$\frac{1}{{e}^{2}},e$]上有且只有两个零点,求实数a的取值范围,e≈2.718.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线的顶点为原点,焦点在x轴上,抛物线上一点A(-3,m)到焦点的距离为7,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断并证明函数f(x)=$\frac{1}{x-1}$在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知空间四边形ABCD,F为BC的中点,E为AD的中点,若$\overrightarrow{EF}$=λ($\overrightarrow{AB}$+$\overrightarrow{DC}$),则λ=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,(1+tanA)(1+tanB)=2,则log2sinC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(0,3)C.[0,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=t|$\overrightarrow{a}$|,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$°,则t的值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③{0,1,2}={2,0,1};④0∈∅;⑤A∩∅=A,正确的个数有2.

查看答案和解析>>

同步练习册答案