精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求四棱锥P﹣ABCD的体积.

【答案】解:(Ⅰ)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.
又因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E为PB上任意一点,DE平面PBD,所以AC⊥DE.
(Ⅱ)连EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
SACE=ACEF,在△ACE面积最小时,EF最小,则EF⊥PB.
SACE=×6×EF=3,解得EF=1.
由△PDB∽△FEB,得PD:EF=BP:FB.
由于EF=1,FB=4,PB= ,所以PB=4PD,即=4PD.
解得PD=
VPABCD=SABCDPD=×24×=
【解析】(I)连接BD,设AC与BD相交于点F.由已知中在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,我们易得AC⊥BD,PD⊥AC,由线面垂直的判定定理可以得AC⊥平面PDB,再由线面垂直的性质定理,即可得到AC⊥DE;
(Ⅱ)连接EF,由(Ⅰ)的结论可知AC⊥平面PDB,EF平面PBD,所以AC⊥EF,结合已知中AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.我们可以求出EF,FB,PD的值,将PD值,及底面四边形ABCD的面积求出后,代入棱锥体积公式,即可得到答案.
【考点精析】认真审题,首先需要了解直线与平面垂直的性质(垂直于同一个平面的两条直线平行).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要想得到函数y=sin(x﹣ )的图象,只须将y=cosx的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,则下列命题中错误的是(  )

A.过BD且与PC平行的平面交PA于M点,则M为PA的中点
B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点
C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点
D.过P、B、C的平面与平面PAD的交线为直线l,则l∥AD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)判定AE与PD是否垂直,并说明理由.
(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为 , 求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有(  )

A.5个
B.4个
C.3个
D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆 )的顶点,且椭圆与双曲线的离心率互为倒数.

(Ⅰ)求椭圆的方程;

(Ⅱ)设动点 在椭圆上,且,记直线轴上的截距为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

设函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)讨论函数零点的个数;

(Ⅲ)若对任意的恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案