精英家教网 > 高中数学 > 题目详情
在直角坐标平面中,△ABC的两个顶点为A(0,-l),B(0,1),平面内两点G,M同时满足:①
OC
=3
OG
(O为坐标原点);②|
MA
|=|
MB
|=|
MC
|
;③
GM
AB

(1)求顶点C的轨迹E的方程;
(2)直线l:y=x+t与曲线E交于P,Q两点,求四边形PAQB面积的最大值.
分析:(1)确定M的坐标,利用|
MA
|=|
MC|
,即可求出顶点C的轨迹E的方程.
(2)直线PQ的方程,将之代入(1)的方程中,运用设而不求韦达定理,根据SPAQB=
1
2
|AB||x1-x2|,即可得到结论.
解答:解:(1)设C(x,y),
由①知,G为△ABC的重心,
∴G(
x
3
y
3

由②知M是△ABC的外心,∴M在x轴上.
由③知M(
x
3
,0),
|
MA
|=|
MC|
(
x
3
)2+1
=
(x-
x
3
)2+y2

化简整理得:
x2
3
+y2=1
(x≠0);
(2)将y=x+t代入椭圆方程,可得4x2+6tx+3t2-3=0,
由△>0,可得t2<4
设P(x1,y1),Q(x2,y2
则x1+x2=-
3
2
t
,x1•x2=
3t2-3
4

∴SPAQB=
1
2
|AB||x1-x2|=
3
2
4-t2

∴t=0时,四边形PAQB面积的最大值为
3
点评:本题考查直线与圆锥曲线的综合问题,平面向量与共线向量,向量数量积的运算,以及求点的轨迹方程,考查了对知识的综合运用能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面中,△ABC的两个顶点A,B的坐标分别为A(-1,0)B(1,0),平面内两点G,M同时满足下列条件:①
GA
+
GB
+
GC
=
0
;②|
MA
|=|
MB
|=|
MC
|;③
GM
AB

(1)求△ABC的顶点C的轨迹方程;
(2)过点P(3,0)的直线l与(1)中轨迹交于不同的两点E,F,求△OEF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数,对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面中,已知点P(0,1),Q(2,3),对平面上任意一点B0,记B1为B0关于P的对称点,B2为B1关于Q的对称点,B3为B2关于P的对称点,B4为B3关于Q的对称点,…,Bi为Bi-1关于P的对称点,Bi+1为Bi关于Q的对称点,Bi+2为Bi+1关于P的对称点(i≥1,i∈N)….则
B0B10
=
(20,20)
(20,20)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)在直角坐标平面中,△ABC的两个顶点A、B的坐标分别为A(-1,0),B(1,0),平面内两点G、M同时满足下列条件:
(1)
GA
+
GB
+
GC
=
O

(2)|
MA
|=|
MB
|=|
MC
|

(3)
GM
AB

则△ABC的顶点C的轨迹方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•金山区一模)在直角坐标平面中,若F1、F2为定点,P为动点,a>0为常数,则“|PF1|+|PF2|=2a”是“点P的轨迹是以F1、F2为焦点,以2a为长轴的椭圆”的(  )

查看答案和解析>>

同步练习册答案