精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c(a,b,c∈R且a≠0),f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t),求S(t)的最小值.
分析:(1)由已知中二次函数f(x)=ax2+bx+c,f′(x)=f(x+1)+x2恒成立,根据多项式相等的性质,构造方程求出系数,可得f(x)的解析表达式;
(2)求出切线方程,进而得到三角形面积S(t)的表达式,结合函数的图象和性质可得最小值.
解答:解:(1)∵f(x)=ax2+bx+c
∴f(x+1)=a(x+1)2+b(x+1)+c=ax2+(2a+b)x+(a+b+c)
f′(x)=2ax+b
∵f′(x)=f(x+1)+x2恒成立
∴2ax+b=(a+1)x2+(2a+b)x+(a+b+c)
a+1=0
2a+b=2a
a+b+c=b

解得a=-1,b=0,c=1
∴f(x)=-x2+1
(2)由(1)得f(x)=-x2+1,f′(x)=-2x
则f(t)=-t2+1,f′(t)=-2t
故切线l的方程为y-(-t2+1)=-2t(x-t)
当x=0时,y=t2+1,当y=0时,x=
t2+1
2t

∴S(t)=
1
2
|xy|=
(t2+1)2
4t

∴S′(t)=
(t2+1)(3t2-1)
4t2

∵t∈(0,
3
3
)时,S′(t)<0,t∈(
3
3
,+∞)时,S′(t)>0,
故当t=
3
3
时,S(t)取最小值
4
9
3
点评:本题考查的知识点是求二次函数的解析式,利用导数法求最值,是导数与二次函数图象和性质的综合应用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案