【题目】在某校统考中,甲、乙两班数学学科前10名的成绩如表:
(I)若已知甲班10位同学数学成绩的中位数为125,乙班10位同学数学成绩的平均分为130,求x,y的值;
(Ⅱ)设定分数在135分之上的学生为数学尖优生,从甲、乙两班的所有数学尖优生中任两人,求两人在同一班的概率.
【答案】解:(Ⅰ)甲班10位同学数学成绩的中位数为125,即为 (123+120+x)=125,解得x=7, 乙班10位同学数学成绩的平均分为130,即130×10=115+117+123+120+y+128+129+136+137+141+148,解得y=6,
(Ⅱ)设定分数在135分之上的学生为数学尖优生,则甲班的有136,147共2人.记为a,b,则乙班的有4人,记为A,B,C,D,
从甲、乙两班的所有数学尖优生中任两人,共有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD共15种,
其中两人在同一班的有ab,AB,AC,AD,BC,BD,CD共7种,
故两人在同一班的概率有
【解析】(Ⅰ)根据平均数和中位数的定义即可求出x,y的值,(Ⅱ)则甲班的有136,147共2人.记为a,b,则乙班的有4人,记为A,B,C,D,一一列举所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.
【考点精析】解答此题的关键在于理解茎叶图的相关知识,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.
科目:高中数学 来源: 题型:
【题目】某校高一年级的A,B,C三个班共有学生120人,为调查他们的体育锻炼情况,用分层抽样的方法从这三个班中分别抽取4,5,6名学生进行调查. (Ⅰ)求A,B,C三个班各有学生多少人;
(Ⅱ)记从C班抽取学生的编号依次为C1 , C2 , C3 , C4 , C5 , C6 , 现从这6名学生中随机抽取2名做进一步的数据分析.
(i)列出所有可能抽取的结果;
(ii)设A为事件“编号为C1和C2的2名学生中恰有一人被抽到”,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求实数x的值;
(2)若 = ,求函数sinx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且经过点(1, ),F1 , F2是椭圆的左、右焦点.
(1)求椭圆C的方程;
(2)点P在椭圆上运动,求|PF1||PF2|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙M:(x+1)2+y2= 的圆心为M,⊙N:(x﹣1)2+y2= 的圆心为N,一动圆M内切,与圆N外切. (Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)设A,B分别为曲线P与x轴的左右两个交点,过点(1,0)的直线l与曲线P交于C,D两点.若 =12,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}前n项和为Sn , 且满足a2=2,S5=15;等比数列{bn}满足b2=4,b5=32.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)同时满足①f(x)为偶函数;②对任意x,有f( ﹣x)=f( +x),则函数f(x)的解析式可以是( )
A.f(x)=cos2x
B.
C.f(x)=cos6x
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.
(1)证明:这三条直线共有三个不同的交点;
(2)求这三条直线围成的三角形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 且 = ,a1=m,现有如下说法: ①a2=5;
②当n为奇数时,an=3n+m﹣3;
③a2+a4+…+a2n=3n2+2n.
则上述说法正确的个数为( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com