精英家教网 > 高中数学 > 题目详情

已知直线l1:mx-y=0,l2:x+my-m-2=0.

(1)求证:对m∈R,l1l2的交点P在一个定圆上;

(2)若l1与定圆的另一个交点为P1l2与定圆的另一交点为P2,求当m在实数范围内取值时,ΔPP1P2面积的最大值及对应的m.

答案:
解析:

  解:(1)分别过定点(0,0)、(2,1),且两两垂直,

  ∴的交点必在以(0,0)、(2,1)为一条直径的圆:

   即上.

  (2)由(1)得(0,0)、(2,1),

  ∴Δ面积的最大值必为

  此时OP与的夹角是,∴m=3或

  点评:涉及多条曲线位置关系问题,要注意运用图形分析方法,用图形的直观来避免代数运算的盲目性和复杂性.


提示:

请试从作的图形,分析的位置入手解题.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•铁岭模拟)(1)已知直线l1:mx+2y+1=0与直线l2:2x-4m2y-3=0垂直,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆O:x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为
5
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l1:mx+2y+1=0与直线l2:x+2my+m2=0平行,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知直线l1:mx+ny+4=0,l2:(m-1)x+y+n=0,l1经过(-1,-1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.
(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.

查看答案和解析>>

同步练习册答案