【题目】已知曲线.
(1)当时,求曲线在处的切线方程;
(2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.
【答案】(I) ;(Ⅱ) .
【解析】试题分析:(1)根据曲线的解析式求出导函数,把的横坐标代入导函数中即可求出切线的斜率根据点斜式可得切线的方程;(2)设出曲线过点切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出斜率,根据切点坐标和表示出的斜率,写出切线的方程,把的坐标代入切线方程即可得到关于切点横坐标的方程,解方程方即可得到切点横坐标的值,分别代入所设的切线方程即可的结果.
试题解析:(Ⅰ)当a=1时, ,∴f'(x)=x2-1,
∴k切=f'(2)=4-1=3.
∵,
所以切线方程为,整理得9x-3y-10=0.
(Ⅱ)设曲线的切点为(x0,y0),则,
所以切线方程为.
又因为切点(x0,y0)既在曲线f(x)上,又在切线上,所以联立得
可得x0=0或x0=3,
所以两切线的斜率之和为-a+(9-a)=9-2a=1,∴a=4.
【方法点晴】本题主要考查导数的几何意义、利用导数求曲线切线,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点 出的切线斜率(当曲线在处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2 . (Ⅰ)判断f(x)奇偶性并证明;
(Ⅱ)用单调性定义证明函数g(x)= 在函数f(x)定义域内单调递增,并判断f(x)=log2 在定义域内的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ )3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,则cos( +β)的值为( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且角φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )内有两个不同的解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各式中,正确的是( )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为( )
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1,C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, , 与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证: ;
(Ⅱ)当时,求点B到曲线C2上的点的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com