精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别为A1B1、A1A的中点.
(Ⅰ)求cos<
BA1
CB1
>的值;
(Ⅱ)求证:BN⊥平面C1MN;
(Ⅲ)求点B1到平面C1MN的距离.
(Ⅰ)以CA所在直线为x轴,以CB所在直线为y轴,以CC1所在直线为z轴建立空间坐标系.
则A(1,0,0),B(0,1,0),A1(1,0,2),B1(0,1,2),C1(0,0,2),M(
1
2
1
2
,2),
N(1,0,1),
BA1
=(1,-1,2),
CB1
=(0,1,2).
cos<
BA1
CB1
=
BA1
CB1
|
BA1
|•|
CB1
|
=
(1,-1,2)•(0,1,2)
6•
5
=
30
10

(Ⅱ)∵
BN
=(1,-1,1),
C1M
=(
1
2
1
2
,0),
C1N
=(1,0,-1),
BN
C1M
=
1
2
-
1
2
+0=0,
BN
C1N
=1-0-1=0,∴
BN
C1M
BN
C1N

∴BN⊥平面C1MN.
(Ⅲ)设点B1到平面C1MN的距离为h,∵VB1-C1MN=VN-C1MB1
1
3
×(
1
2
MN•MC1)h=
1
3
×(
1
2
B1M•C1M) NA1
1
3
×(
1
2
1+
2
4
2
2
)h=
1
3
×(
1
2
2
2
2
2
)×1,∴h=
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC边上取点E,使PE⊥DE,则满足条件的E点有两个时,a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)求证:平面PAB平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明;
(3)证明平面EFG⊥平面PAD,并求点D到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.
(1)求证:AP平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)求证:CM平面PAD;
(2)求证:BC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足
PE
=
1
3
PD

(1)求证:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,AC⊥BC,D是棱AA1的中点,AA1=2AC=2BC=2a(a>0).
(1)证明:C1D⊥平面BDC;
(2)求三棱锥C-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,∠PAB=∠PAC=∠ACB=90°.
(1)求证:平面PBC丄平面PAC
(2)已知PA=1,AB=2,当三棱锥P-ABC的体积最大时,求BC的长.

查看答案和解析>>

同步练习册答案