精英家教网 > 高中数学 > 题目详情
16.设U=R,A={x|1≤x≤3},B={x|2<x≤4},C={x|a≤x≤a+1},a为实数,
(1)分别求A∩B,A∪(∁UB); 
(2)若B∩C=C,求a的取值范围.

分析 (1)利用集合交集、并集、补集的运算,可得结论;
(2)利用B∩C=C,可得C⊆B,$\left\{\begin{array}{l}{a>2}\\{a+1≤4}\end{array}\right.$,即可求a的取值范围.

解答 解:(1)∵U=R,A={x|1≤x≤3},B={x|2<x≤4},
∴A∩B=(2,3],A∪(∁UB)=(-∞,3]∪(4,+∞)
(2)∵B∩C=C,
∴C⊆B,
∴$\left\{\begin{array}{l}{a>2}\\{a+1≤4}\end{array}\right.$,
∴2<a≤3

点评 本题考查集合交集、并集、补集的运算,考查集合的关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.桌面上有大小两颗球,相互靠在一起.已知大球的半径为9cm,小球半径4cm,则这两颗球分别与桌面相接触的两点之间的距离等于12 cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的  集合共有(  ) 个.
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2ax+1在区间[-3,2]上有最小值,记作g(a)
(Ⅰ)求g(a)的函数表达式;
(Ⅱ)求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式(x+2)(x-3)>0的解集为(-∞,-2)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法正确的是④
①4cos10°-tan80°化简结果为$\sqrt{3}$;
②sinx+cosx+sinxcosx最大值为2;
③y=$\frac{sinx+1}{cosx+2}$的最大值为1;
④y=x+$\sqrt{4-{x^2}}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα=2,则sinαcosα=(  )
A.-$\frac{2}{3}$B.$\frac{2}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆C的方程为:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为($\sqrt{2},\frac{π}{4}$).(极角范围为[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A,B,C,且A⊆B,A⊆C,若B={0,1,2,3,4},C={0,2,4,8},则满足条件的集合A有8个.

查看答案和解析>>

同步练习册答案