分析 求出函数的导数,问题转化为a<x2+x在(1,2)恒成立,令g(x)=x2+x,x∈(1,2),根据函数的单调性求出a的范围即可.
解答 解:f′(x)=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{{x}^{2}+x-a}{{x}^{2}}$,
若f(x)在(1,2)递增,
则x2+x-a>0在(1,2)成立,
即a<x2+x在(1,2)恒成立,
令g(x)=x2+x,x∈(1,2),
则g′(x)=2x+1>0,
则g(x)在(1,2)递增,
故g(x)min=g(1)=2,
故a<2,
故答案为:(-∞,2).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | $-\frac{1}{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com