精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
分析:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,转化为即:m≤
x
lnx
在(1,+∞)上恒成立,从而得出实数m的取值范围.
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k(x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围.
(3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=
1
2
处取得极小值即可.
解答:精英家教网解:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,
即:x2-mlnx≥x2-x,
mlnx≤x,即:m≤
x
lnx
在(1,+∞)上恒成立,
因为
x
lnx
在(1,+∞)上的最小值为:e,
∴m≤e.
实数m的取值范围:m≤e
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,
即:k(x)=x-2lnx-a,
设y1=x-2lnx,y2=a,分别画出它们的图象,
由图得:
实数a的取值范围(2-2ln2,3-2ln3];精英家教网
(3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,
由图可知,只须函数f(x)=x2-mlnx在x=
1
2
处取得极小值即可.
∵f(x)=x2-mlnx
∴f′(x)=2x-m×
1
x
,将x=
1
2
代入得:
1-2m=0,
∴m=
1
2

故存在实数m=
1
2
,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.
点评:数形结合思想是解析函数图象交点个数、函数零点个数中最常用的方法,即画出满足条件的图象,然后根据图象直观的分析出答案,但数形结合的前提是熟练掌握各种基本初等函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案