【题目】已知,,分别为的中点,,将沿折起,得到四棱锥,为的中点.
(1)证明:平面;
(2)当正视图方向与向量的方向相同时,此时的正视图的面积为,求四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】如图,在极坐标系中,,,弧,,所在圆的圆心分别为,,,曲线是弧,曲线是弧,曲线是弧.
(1)写出曲线,,的极坐标方程;
(2)曲线由,,构成,若曲线的极坐标方程为(,,,),写出曲线与曲线的所有公共点(除极点外)的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线过点,抛物线在处的切线交轴于点,过点作直线与抛物线交于不同的两点、,直线、、分别与抛物线的准线交于点、、,其中为坐标原点.
(Ⅰ)求抛物线的方程及其准线方程,并求出点的坐标;
(Ⅱ)求证:为线段的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中,BD为四边形的一条对角线,且,将沿BD向上翻折,当点A在平面BCD内的投影恰好为的外心E时,设直线AE与平面ABC,ACD,ABD的夹角分别为,,,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,∠BAD=60°,△PAD是边长为2的正三角形,底面ABCD是菱形,点M为PC的中点.
(1)求证:PA∥平面MDB;
(2)求三棱锥A﹣BDM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:().若,,,四点中有且仅有三点在椭面C上.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,F为椭圆C的右焦点,过点F的直线l分别与椭圆C交于M,N两点,,求证:直线,关于x轴对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,曲线上任意一点到的距离等于该点到直线的距离.
(Ⅰ)求及曲线的方程;
(Ⅱ)若直线与椭圆只有一个交点,与曲线交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com