精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l经过点A(﹣1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求 的取值范围.

【答案】解:(Ⅰ)曲线C的极坐标方程转化成直角坐标方程是C:x2+y2﹣6x+5=0,
由题意知直线l的斜率存在,设直线l:y=k(x+1),其中k=tanα.
联立
消去y得(1+k2)x2+2(k2﹣3)x+k2+5=0.
因为直线l和曲线C有交点,所以△=4(k2﹣3)2﹣4(1+k2)(k2+5)≥0,


所以
(Ⅱ)曲线C:x2+y2﹣6x+5=0即(x﹣3)2+y2=4的参数方程是 (θ为参数),
所以点B(x,y)的坐标可以写成(3+2cosθ,2sinθ),
所以
因为sin(θ+ )∈[﹣1,1],
所以 x+y∈[3 ﹣4,3 +4]
【解析】(Ⅰ)由x=ρcosθ,y=ρsinθ,代入曲线C的极坐标方程,可得曲线的直角坐标方程,联立直线l的方程,消去y,运用判别式大于等于0,可得斜率的范围,再由斜率公式,可得倾斜角的范围;(Ⅱ)求得曲线C的参数方程,运用两角和的正弦公式和正弦函数的值域,即可得到所求范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】.

1)求的单调区间;

2)求[-5 ]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查患胃病是否与生活规律有关,在某地对岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.

(1)根据以上数据列出列联表;

(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与以为直径的圆所在平面垂直,中点,是圆周上一点,且

1)求异面直线所成角的余弦值;

2)设点是线段上的点,且满足,若直线平面,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:

使用智能手机

不使用智能手机

合计

学习成绩优秀

学习成绩不优秀

合计

(1)根据以上统计数据,你是否有的把握认为使用智能手机对学习有影响?

(2)为进一步了解学生对智能手机的使用习惯,现从全校使用智能手机的高中生中(人数很多)随机抽取 人,求抽取的学生中学习成绩优秀的与不优秀的都有的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.

(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;

(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;

(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.

参考数据: .

参考公式:(计算时精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(Ⅰ)求 的值;
(Ⅱ)若A=60°,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,上异于的点.

(1)证明:平面平面

(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案