精英家教网 > 高中数学 > 题目详情
等差数列{an}中的a1、a4017是函数f(x)=
1
3
x3-4x2+6x-1的极值点,则log2a2009=(  )
A、2B、3C、4D、5
考点:利用导数研究函数的极值,等差数列的性质
专题:导数的概念及应用
分析:利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.
解答: 解:f′(x)=x2-8x+6,
∵a1、a4017是函数f(x)=
1
3
x3-4x2+6x-1的极值点,
∴a1、a4017是方程x2-8x+6=0的两实数根,则a1+a4017=8.而{an}为等差数列,
∴a1+a4017=2a2009,即a2009=4,从而从而log2a2009=log24=2.
故选A.
点评:熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=|sin(3x+
π
4
)|的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x≤2
,则目标函数z=x2+y2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)恒过定点A(1,2),则椭圆的中心到直线l:x=
a2
c
的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+1,若f(x)>0的解集为{x|-2<x<1},函数g(x)=2x+3,
(1)求a与b的值; 
(2)解不等式f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边为a,b,c,且A=60°,5sinB=3sinC
(1)若△ABC的面积为
15
3
4
,求a,b,c的长;
(2)在(1)的条件下,若把三角形的每条边都增加相同的长度x(x>0),则△ABC是什么三角形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(1+x-
x2
2
+
x3
3
)cos2x在区间[-3,3]上的零点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥D-ABC中,底面三角形ABC的面积为4
3
,A1、B1、C1是棱DA、DB、DC的中点,E、F在线段A1B1、A1C1上,且EF∥B1C1.则△AEF和四边形EFCB在底面ABC上的射影的面积之和为(  )
A、
2
3
3
B、
4
3
3
C、
8
3
3
D、与EF位置有关,总面积不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线的斜率为3.
(1)求实数a的值;
(2)若f(x)≤kx2对任意x>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案