【题目】已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为;|f(2x)|+|g(x)|的最小值为 .
【答案】[ ,3];1
【解析】解:∵f(x)=x﹣2,g(x)=2x﹣5, ∴|f(x)|+|g(x)|≤2,
即|x﹣2|+|2x﹣5|≤2,
x≥ 时,x﹣2+2x﹣5≤2,解得: ≤x≤3,
2<x< 时,x﹣2+5﹣2x≤2,解得:x≥1,
x≤2时,2﹣x+5﹣2x≤2,解得:x≥ ,
综上,不等式的解集是[ ,3];
|f(2x)|+|g(x)|=|2x﹣4|+|2x﹣5|≥|2x﹣4﹣2x+5|=1,
故|f(2x)|+|g(x)|的最小值是1,
所以答案是:[ ,3],1.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),曲线C2的普通方程为,以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和C2的极坐标方程;
(2)若A,B是曲线C2上的两点,且OA⊥OB,求+的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)当x∈(1,+∞)时,xf(x)+xe1﹣x>1恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与抛物线交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为.
(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE||OF|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中, 面, 是平行四边形, , ,点为棱的中点,点在棱上,且,平面与交于点,则异面直线与所成角的正切值为__________.
【答案】
【解析】
延长交的延长线与点Q,连接QE交PA于点K,设QA=x,
由,得,则,所以.
取的中点为M,连接EM,则,
所以,则,所以AK=.
由AD//BC,得异面直线与所成角即为,
则异面直线与所成角的正切值为.
【题型】填空题
【结束】
17
【题目】在极坐标系中,极点为,已知曲线: 与曲线: 交于不同的两点, .
(1)求的值;
(2)求过点且与直线平行的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,点满足,记点的轨迹为.
(1)求轨迹的方程;
(2)若直线过点且与轨迹交于、两点.
(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.
(ii)在(i)的条件下,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中,已知,对于任意的,有.
(1)求数列的通项公式.
(2)若数列满足,求数列的通项公式.
(3)设,是否存在实数,当时,恒成立?若存在,求实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com