精英家教网 > 高中数学 > 题目详情
(2012•辽宁)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN∥平面A′ACC′;
(Ⅱ)求三棱锥A′-MNC的体积.
(椎体体积公式V=
1
3
Sh,其中S为地面面积,h为高)
分析:(Ⅰ)证法一,连接AB′,AC′,通过证明MN∥AC′证明MN∥平面A′ACC′.
证法二,通过证出MP∥AA′,PN∥A′C′.证出MP∥平面A′ACC′,PN∥平面A′ACC′,即能证明平面MPN∥平面A′ACC′后证明MN∥平面A′ACC′.
(Ⅱ)解法一,连接BN,则V A′-MNC=V N-A′MC=
1
2
V N-A′BC=
1
2
V A′-NBC=
1
6

解法二,V A′-MNC=V A′-NBC-V M-NBC=
1
2
V A′-NBC=
1
6
解答:(Ⅰ)(证法一)
连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,

所以M为AB′的中点,又因为N为B′C′中点,所以MN∥AC′,
又MN?平面A′ACC′,AC′?平面A′ACC′,所以MN∥平面A′ACC′;
(证法二)
取A′B′中点,连接MP,NP.而M,N分别为AB′,B′C′中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′;又MP∩PN=P,
所以平面MPN∥平面A′ACC′,而MN?平面MPN,所以MN∥平面A′ACC′;
(Ⅱ)(解法一)连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=
1
2
B′C′=1,故
V A′-MNC=V N-A′MC=
1
2
V N-A′BC=
1
2
V A′-NBC=
1
6

(解法二)
V A′-MNC=V A′-NBC-V M-NBC=
1
2
V A′-NBC=
1
6
点评:本题考查线面关系,体积求解,考查空间想象能力、思维能力、推理论证能力、转化、计算等能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,已知椭圆C0
x2
a2
+
y2
b2
=1(a>b>0,a,b为常数)
,动圆C1x2+y2=
t
2
1
,b<t1<a
.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2x2+y2=
t
2
2
与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,动圆C1x2+y2=
t
2
 
,1<t<3与椭圆C2
x2
9
+y2=1
相交于A,B,C,D四点,点A1,A2分别为C2的左,右顶点.
(Ⅰ)当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积;
(Ⅱ)求直线AA1与直线A2B交点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

 [2012·辽宁卷] 如图1-5,直三棱柱ABCABC′,∠BAC=90°,ABACAA′=1,点MN分别为ABBC′的中点.

(1)证明:MN∥平面AACC′;

(2)求三棱锥A′-MNC的体积.

(锥体体积公式VSh,其中S为底面面积,h为高)

图1-5

查看答案和解析>>

同步练习册答案