精英家教网 > 高中数学 > 题目详情
13.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x-1,若f(a)=3,则实数a=1.

分析 先求出x>0时的解析式,再利用条件,即可求出a的值.

解答 解:设x>0,则-x<0,∴f(x)=-f(-x)=-(-2x-1)=2x+1,
∴a<0,2a-1=3,a=2(舍去);a>0,2a+1=3,∴a=1.
故答案为:1.

点评 本题考查函数的奇偶性,考查学生的计算能力,确定函数的解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.甲、乙两地相距200千米,小型卡车从甲地匀速行驶到乙地,速度不得超过150千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:千米/小时)的平方成正比,且比例系数为$\frac{1}{250}$;固定部分为40元.
(1)把全程运输成本y元表示为速度v千米/小时的函数,并指出这个函数的定义域,
(2)为了使全程运输成本最小,卡车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱锥P-ABC中,底边AB=8,顶角∠APB=90°,则过P、A、B、C四点的球体的表面积是(  )
A.384πB.192πC.96πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C的对边分别为a,b,c,且cos(B-C)+cosA=$\frac{3}{2}$,a2=bc.
(1)求角A的大小;
(2)名△ABC的面积为4$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化简的结果是$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到y=sin2x-$\sqrt{3}$sin2x-cos2x的图象,只需将y=2sin2x的图象(  )
A.向左平移$\frac{5π}{12}$个单位B.向左平移$\frac{5π}{6}$个单位
C.向右平移$\frac{5π}{12}$个单位D.向右平移$\frac{5π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的极坐标方程是ρ=2sinθ+4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosa}\\{y=tsina}\end{array}\right.$(t为参数)
(1)写出曲线C的参数方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{3}$,求直线l的倾斜角a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,则f(x)>0的解集为(1,+∞)∪(-1,0).

查看答案和解析>>

同步练习册答案