精英家教网 > 高中数学 > 题目详情

 已知椭圆的中心在原点,准线方程为x=±4,如果直线:3x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点.

  (1)求椭圆方程;

  (2)设直线与椭圆的一个交点为P,F是椭圆的一个焦点,试探究以PF为直径的圆与椭圆长轴为直径的圆的位置关系;

  (3)把(2)的情况作一推广:写出命题(不要求证明).

 

 

 

 

 

【答案】

 解:(1)设椭圆方程为 (a>b>0)

          直线3x-2y=0与椭圆的一个交点的坐标是,代入椭圆方程得:

            又   a2=b2+c2

          ∴ a=2     C=1

          ∴                ………………5分

 

        (2)由(1)知,直线与椭圆的一个交点为,F(1,0),则从PF为直径的圆的方程,圆心为,半径为

          以椭圆长轴为直径的圆的方程为x2+y2=4,圆心(0,0),半径为2

          两圆圆心之间距离为

          ∴ 两圆内切               ………………8分

         P、F为其它三种情况时,两圆都为内切     ………………10分

       (3)如果椭圆的方程是 (a>b>0),P是椭圆上的任意一点,F是椭圆的一个焦点,则以PF长为直径的圆与以椭圆长轴为直径的圆是内切关系。                    …………13分

        (如P写成椭圆上的定点,此问只给1分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案