精英家教网 > 高中数学 > 题目详情
图①是一个边长为(m+n)的正方形,小明将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是(  )
A、(m+n)2-(m-n)2=4mn
B、(m+n)2-(m2+n2)=2mn
C、(m-n)2+2mn=m2+n2
D、(m+n)(m-n)=m2-n2
考点:基本不等式
专题:函数的性质及应用
分析:本题可以根据两个图形变化前后的面积相等,得到本题结论.
解答: 解:如图①,图中阴影部分的面积可表示为:
S=S大正方形-S小正方形
大正方形的面积为:(m+n)2
小正方形的边长为:
m2+n2

∴小形的面积为:m2+n2
∴S=(m+n)2-(m2+n2).
如图②,图中面积为4个直角三角形,
S=4×
1
2
mn=2mn.
∴(m+n)2-(m2+n2)=2mn,
故答案为:B.
点评:本题考查了构造法研究相等关系,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=1-
2
x+1
,x∈[2,3]的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输入的x∈[0,1],则输出的x的范围是(  )
A、[1,3]
B、[3,7]
C、[7,15]
D、[15,31]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD中,P为棱AD的中点,则过点P与面ABC和面BCD所在平面都成60°角的平面共有几个?(若二面角α-l-β的大小为120°,则平面α与β所成角也为60°)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg
1-x
1+x
,且f(x)+f(y)=f(z),则z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E,F分别为PA、AC的中点.
(Ⅰ)求证:EF∥平面PAB;
(Ⅱ)求点F到平面ABE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
α
β
满足|
α
|=|
β
|=1,且
α
β
-
α
的夹角为120°,则|(1-t)
α
+2t
β
|(t∈R)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M(x0,y0)为抛物线C:y=
1
8
x2
上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A、(2,+∞)
B、[0,2]
C、(0,
1
32
D、(
1
32
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,甲、乙、丙是三个空间立体图形的三视图,甲、乙、丙对应的标号正确的是(  )
①长方体  ②圆锥    ③三棱锥    ④圆柱.
A、③②④B、②①③
C、①②③D、④③②

查看答案和解析>>

同步练习册答案