精英家教网 > 高中数学 > 题目详情
已知命题p:函数f(x)=sin2x的最小正周期为π;q:函数g(x)=cosx是奇函数;则下列命题中为真命题的是(  )
A、p∨qB、p∧qC、?pD、(?p)∨q
分析:根据正弦函数的最小正周期与余弦函数的奇偶性判断命题p、q的真假,再由复合命题真值表依次判断可得答案.
解答:解:∵函数f(x)=sin2x的最小正周期为
2
=π,
∴命题p为真命题;
∵函数g(x)=cosx是偶函数,
∴命题q为假命题,
由复合命题真值表得:p∨q为真命题;p∧q为假命题;¬p为假命题;(¬p)∨q为假命题,
选故A.
点评:本题考查了简单命题的真假判定,复合命题的真假判定规律,熟练掌握复合命题真值表是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(m-2)x为增函数,命题q:“?x0∈R,x02+2mx0+2-m=0”,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2-2x+
12
a
的图象与x轴有交点,命题q:f(x)=(2a-1)x为R上的减函数,则p是q的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=
1-x3
,实数m满足不等式f(m)<2,命题q:实数m使方程2x+m=0(x∈R)有实根.若命题p、q中有且只有一个真命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(a-1)x+a在(-∞,+∞)上是增函数;命题q:
32-a
>2
.若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(11+a-2a2x是R上单调递增的指数函数.
命题q:关于x的不等式x2-(3a+2)x+a2≥0的解集为R.
若命题“p或q”为真命题,且命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案