精英家教网 > 高中数学 > 题目详情
14.已知坐标平面内两个定点F1(-4,0),F2(4,0),且动点M满足|MF1|+|MF2|=8,则点M的轨迹是(  )
A.两个点B.一个椭圆C.一条线段D.两条直线

分析 首先确定点M在直线上,再利用长度关系,确定点M在线段F1F2上,从而得到结论.

解答 解:若点M与F1,F2可以构成一个三角形,则|MF1|+|MF2|>|F1F2|,
∵|F1F2|=8,动点M满足|MF1|+|MF2|=8,
∴点M在线段F1F2上.
故选:C.

点评 本题考查轨迹的求法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.[普通中学做]设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=5,|$\overrightarrow{BC}$|=6,则|$\overrightarrow{AH}$|=(  )
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{15}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+alnx.
(1)当a=-2e时,求函数f(x)的极值;
(2)若函数g(x)=f(x)+$\frac{2}{x}$在[1,2]上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设{an}是公比为q的等比数列,令bn=an+1(n∈N*),若数列{bn}的连续四项在集合{-15,-3,9,18,33}中,则q等于(  )
A.-4B.2C.-4或-$\frac{1}{4}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某校十大歌手比赛上,七位评委为某同学打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.85,4.84B.85,1.6C.86,1.6D.86,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式loga(t2+2t-2)>0的解集为(  )
A.(-3,1)B.$(-1+\sqrt{3},1)∪(-3,-1-\sqrt{3})$C.$(-1-\sqrt{3},-1+\sqrt{3})$D.$(-∞,-1-\sqrt{3})∪(-1+\sqrt{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在棱长为4的正方体ABCD-A′B′C′D′中,点P在棱CC′上,且CC′=2CP.
(1)求直线AA′与平面APD′所成角的正弦值;
(2)求二面角A-D′P-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+lnx.
(1)当a=-$\frac{1}{2}$时,求函数f(x)在[$\frac{1}{e}$,e]的值域;
(2)求函数f(x)的单调区间;
(3)若函数f(x)在区间(1,2)上不单调,求实数a的取值范围.

查看答案和解析>>

同步练习册答案