精英家教网 > 高中数学 > 题目详情
8.已知${∫}_{0}^{2}(m{e}^{mx}+sinx)dx={e}^{4}-cos2$,则${∫}_{-\frac{π}{m}}^{\frac{π}{m}}(cosx+\frac{3}{2-x})dx$=2+3ln$\frac{4+π}{4-π}$.

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{0}^{2}$(memx-cosx)dx=(emx-cosx)|${\;}_{0}^{2}$=(e2m-cos2)-(1-cos0)=e2m-cos2=e4-cos2,
解的m=2,
则${∫}_{-\frac{π}{m}}^{\frac{π}{m}}$(cosx+$\frac{3}{2-x}$)dx=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(cosx+$\frac{3}{2-x}$)dx=[(sinx-3ln(2-x)]|${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$=sin$\frac{π}{2}$-3ln(2-$\frac{π}{2}$)-sin(-$\frac{π}{2}$)+3lin(2+$\frac{π}{2}$)=2+3ln$\frac{4+π}{4-π}$,
故答案为:2+3ln$\frac{4+π}{4-π}$,

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知圆C:(x-1)2+(y-2)2=25,直线l:my-x+3-m=0,当直线l被圆C截得的弦最短时的m的值是(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a+b=2,b>0,
(1)若a>0,且a+2b+mab>0恒成立,求m的取值范围;
(2)若a∈R,求 $\frac{1}{2|a|}$+$\frac{|a|}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH,图2、图3分别是该标识墩的正视图和俯视图.

求:
(1)画出该标识墩的侧视图;
(2)计算该标识墩的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义在区间(-1,1)上的函数$f(x)=\frac{ax-b}{{{x^2}+1}}$是奇函数,且$f(\frac{1}{2})=\frac{2}{5}$,
(1)确定y=f(x)的解析式;
(2)判断y=f(x)的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于函数f(x)=2sin(2x-$\frac{π}{6}$)(x∈R),有下列命题:
①y=f(x)的图象关于直线x=-$\frac{π}{6}$对称     
②y=f(x)的图象关于点($\frac{π}{6}$,0)对称
③若f(x1)=f(x2)=0,可得x1-x2必为π的整数倍
④y=f(x)在(-$\frac{π}{6}$,$\frac{π}{6}$)上单调递增
⑤y=f(x)的图象可由y=2sin2x的图象向右平移$\frac{π}{6}$个单位得到
⑥y=f(x)的表达式可改写成y=2cos(2x+$\frac{π}{3}$),
其中正确命题的序号有①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)若正数a,b满足a≥4,ab=a+b+3,则ab的取值范围是多少?
(2)已知a>0,b>0,4a+b=1,求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直线y=x+b是椭圆$\frac{{x}^{2}}{1{2}^{2}}$+$\frac{{y}^{2}}{{5}^{2}}$=1的切线,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设定义在R上的函数f(x)同时满足以下三个条件:
①f(x)+f(-x)=0;
②f(x+2)=f(x);
③当0<x<1时,$f(x)=-\frac{x}{2}$,
则$f(\frac{3}{2})$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案