精英家教网 > 高中数学 > 题目详情
7.在矩形ABCD中,|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=1,则向量$\overrightarrow{BD}$的模等于2.

分析 根据向量的加法和减法运算求出向量$\overrightarrow{BD}$即可.

解答 解:在矩形ABCD中,|$\overrightarrow{BD}$|=$\sqrt{|\overrightarrow{AB}{|}^{2}+|\overrightarrow{BC}{|}^{2}}$=$\sqrt{(\sqrt{3})^{2}+{1}^{2}}=\sqrt{3+1}$=$\sqrt{4}=2$,
故答案为:2.

点评 本题主要考查向量模长的计算,根据矩形的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知ω>0,函数f(x)=cos($\frac{π}{4}$-ωx)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=x4-8x2+2在[-1,3]上的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点O(0,0),A(1,1),直线l:x-y+1=0且点P在直线l上,则|PA|+|PO|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正整数a,b满足4a+b=30,使得$\frac{1}{a}$+$\frac{1}{b}$取最小值时,则实数对(a,b)是(  )
A.(5,10)B.(6,6)C.(10,5)D.(7,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数$f(x)=({1+\frac{1}{tanax}}){sin^2}ax-2sin({ax+\frac{π}{4}})sin({ax-\frac{π}{4}})$(a>0)的图象与直线y=m相切,相邻切点之间的距离为$\frac{π}{2}$.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,$\frac{π}{2}$],求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个n位十进制数a1a2a3…an的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的个数是(  )
A.16B.18C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个数对是(4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于二项式${(\sqrt{x}-1)^{2005}}$有下列命题:
①该二项展开式中非常数项的系数和是1;   
②该二项展开式中第六项为$C_{2005}^6•{x^{1999}}$;
③该二项展开式中无有理项;
④当x=100时,${(\sqrt{x}-1)^{2005}}$除以100的余数是49.
其中正确的序号是①④.(注:把你认为正确的命题序号都填上)

查看答案和解析>>

同步练习册答案